\\)' A

FUNCTIONAL REQUIREMENTS FOR DESIGN

OF THE SPACE ULTRARELIABLE MODULAR COMPUTER
(SUMC) SYSTEM SIMULATOR: INTERIM REPORT

By

R.T.Cu rran
W. A. ' Hornfeck

Prepdred for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center |

Marshc.II Spdce Flight Center. Alabama

. | £
CONTRACT NAS8-26698 QQ}}\\
CRrR —/33,5‘97 {;

"February 1972

~N

/ (NASA-CR-12357i) FUNCTIONAL REQUIREMENTS N72-20179
" FOR DESIGN OF THE SPACE ULTRARELIABLE

i MODULAR COMPUTER (SUHNC) SYSTEM SIMULATOR

Interim R.T. Curran, et al (Computer Unclas
Sciences Corp.) Feb, 1972 43 p CSCL 09B G3/68 15176
% (NASA CR OR TMX OR AD NUMBER) mmm&ﬁ/ ‘

(™

COMPUTER SCIENCES CORPORATION

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Co
Springfield VA 22rr;g1‘erce

M

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. . RECIPIENT'S CATALOG N07
4. TITLE AND SUBTITLE 5. REPORT DATE
Functional Requirements for Design of the Space Ultrareliable
Modular Computer (SUMC) System Simulator: Interim Report 6. PERFORMING ORGANIZATION COOE
l_
7. AUTHOR {5) . 8. PERFORMING ORGANIZATION REPORT =
R. T. Curran and W. A. Hornfeck
9, PERFORMING OFEGAN!ZAT!ON NAME AND ADDRESS 10. WORK UNIT NO.
Computer Sciences Corporation -
Field Services Division, Aerospace Systems Center » 11. CONTRACT OR GRANT NO.
8300 South Whitesburg Drive) } NAS8-26698
Huntsville. Alabama 35802 13, TYPE OF REPORT & PERIOD COVERED
12, SPONSORING AGENCY NAME AND ADDRESS) i .

. . . R : Contractor Interim Report
National Aeronautics and Space Administration p
Washington
D. C. 20546 14, SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Work performed for Marshall Space Flight Center Computation Laboratory.

“16. ABSTYRACT

This interim report presents the functional requirements for the design of an interpretive
simulator for the Space Ultrareliable Modular Computer (SUMC). A review of applicable
existing computer simulations is included along with constraints on the SUMC simulator
functional design. Input requirements, output requirements, and language requirements
for the simulator are discussed in terms of a SUMC configuration which may vary according
_to the application. Conclusions and recommendations concerning future development are

also included.

_1—7 KEY WE)RDS . ' 18. DISTRIBUTION STATEMENT
Simulation Digital Computer Unlimited
Microprogram Target Computer
Microinstruction Host Computer
Diagnostics Operating System B. Hodges, NASA
Subroutline Link Editor Contracting Officer
1. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES l 22. PRICE
Unclassified ~ Unclassified 45

2srC - Form 3292 (May 1969)

.4

FURCTIONAL REQUIREMENTS FOR DESIGN
OF THXE SPACE ULTRARELIABLE MODULAR COMPUTER
{(SURNC) SYSTEM SIMULATOR: INTERIM REPORT.

By

R. T. Curran
W. A. Hornfeck

Prepared Under

CONTRACT NAS8-26698

Prepared For

NAFIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

COMPUTER SCIENCES CORPORATION
8300 South Whitesburg Drive
Huntsville, Alabama 35802

FOREWORD

The studies reported here were administered in the Systems Research
Branch, Computer Systems Division, Computation Laboratory, MSFC, with
Mr. Bobby C. Hodges as Contracting Officer's Representative. We wish to
express our appreciation for Mr., Hodges' help in planning and for his cogent
comments and suggestions.

Acknowledgement is also due Mr. James L. Lewis of the Astrionics

Laboratory and Mr, Thomas E. Hill of the Computation Laboratory for their
assistance in the definition of the simulator functional requirements.

ii

TABLE OF CONTENTS

Section . Page
I INTRODUCTION v v v v v v v v e e et e e v 2
I EXISTING COMPUTER SIMULATORS. 3

A. Review of Existing Simulators 3
B. Other Related Computer Simulators. 7
C. Summary and Conclusions 7
III CONSTRAINTS ON THE SIMULATOR . . A
FUNCTIONAL DESIGN. . . . « v « v s v o o o o o o o » 10
A. Baseline Target SUMC « v ¢ ¢ v v v o o 10
B. Simulator Operating Environment. 12
C. Simulator Development Environment 14

v FUNCTIONAL REQUIREMENTS AND DESIGN CONCEPTS . . 18

A. Methodology Overview. ¢« v v v o v o « o 18
B. Input Requirements v ¢ v v v 4 v o4 . .. 20
C. Output Requirements« ... 22
D. Language Requirements 7. 24
E. Future Simulator Enhancement 24
Vv CONCLUSIONS AND RECOMMENDATIONS 26

APPENDIX: SUMC SIMULATOR ANNOTATED FLOW CHART. 28

iii

Table

B> W N

LIST OF ILLUSTRATIONS

Title

SUMC Scratch Pad and Main Storage Layout .
Simulator-Peripheral Device Communication

Interrupt Detection and Service Subroutine

 Sirulatoy Bedutaiity Diagram

Integration of Simulator Into SUMC Support Software -.

Simulator Interpretive Operation.

Other Related Simulators
Critical SUMC Design Parameters
Program Module Definition

Phased Simulator Development.

iv

Page

| 11la

13
13a
15
19
29

11
16
27

FUNCTIONAL REQUIREMENTS FOR DESIGN
OF THE SPACE ULTRARELIABLE MODULAR COMPUTER
(SUMC) SYSTEM SIMULATOR: INTERIM REPORT

SUMMARY

This report contains the results of the functional requirements deter-
mination phase for an interpretive software computer simulator. This simulator
must permit variation of certain design parameters of the target SUMC such as
instruction definition, Scratch Pad, main storage and computer word organization
and, additionally, must provide the capabhility to interface with anticipated periph-
eral device simulators. '

The preceding requirements are met by designing software subroutines
to accomplish specific SUMC instructions., The subroutines are summoned by
a mainline subprogram upon detection of execution commands present in a sim-
ulated SUMC program resident in the host computer. Detection is aided by the
analysis of the specification parameters for the particular SUMC design.

In addition to the 'foregoing, the simulator enhances debugging efforts by
providing output of the simulated program history such as traces, snapshots
and memory dumps. To effect these outputs, the mainline subprogram must
detect the appropriate request parameter and cause consequent collection and
publishing of the selected program information,

While the SUMC family is the chosen target for simulation, the selection
of the hosi computer must be free of constraints to the feasible limit. For this
reason the simulator will be written in the FORTRAN language. In addition to
the FORTRAN coding, - modularity in the construction of the program will ensure
that any computer dependencies will be isolated and easily changed to permit
transfer between host computers. '

/

SECTION I. INTRODUCTION

This report presents the results of the functional requirements and
design definition phase of the study for the generation of the SUMC family .
simulator. Relevant results of a survey of reports describing active simula-
tors are discussed. A bibliography containing additional references to reports
with a general rather than a particular impact on the functional requirements
and design of the simulator is included, ‘

Following the review of existing simulators, the simulator environmental
constraints are analyzed. Salient simulation-oriented characteristics of the
SUMC family target machines are presented. The host machine and simulator
operating environment effect on the simulator design is discussed in terms of
their effect on the software organization.

Given the definition of the impact of the simulator environment on the
simulator functional design, attention is then directed to the simulator itself.
The role of the simulator within the SUMC development software is described,
and then, input, interpretive simulation and output process functional require-
ments and design considerations for the simulator are related, I‘mally, the
report is summarized and recommendations are presented,

The myriad problems associated with simultaneous development of the
hardware and software for (prototype) computer systems have led to the utiliza-
tion of large existing computers for software development. Consonant with this
trend, software executing on a commercial computer will be provided for the
Space Ultrareliable Modular Computer (SUMC) family. An important subset
of this software is a computer simulator which permits debugging and verifica-
tion of SUMC programming in parallel with the computer hardware development.

SECTION II. EXISTING COMPUTER SIMULATORS

A. Review of Existing Simulators

A large number of computer programs presently exist which simulate
or emulate* the operation of one computer system on another. Unfortunately,
most simulation problems are of a specialized nature which in turn causes
simulators to be tailored to individual needs. Many simulation programs
make use of special purpose simulation languages, while others employ a
standard source language either at the assembly language level or at a much
higher level., A further disparity arises from the fact that different levels of
simulation may be performed. For example, the simulation of a given target
computer may be desired at the machine register level(l), In this case, all
hardware registers and their logical contents are maintained by the host
computer throughout the simulation. This type of simulation yields informa-
~ tion for the designer which reveals the sequence of target computer hardware
operations that take place under a given set of input instructions. On the other
hand, the simulation may be at the system level(2), Here the designer is not
concerned with validation of target machine hardware, but with validation of
the target computer as an efficient data processing system. For this type of
simulation, the designer is interested in CPU loading, I/O channel loading,
and application program queues/overruns. ’

A number of éxisting simulators have been studied in order to
determine their degree of applicability to the problem at hand, While none of
the simulators could be used directly in the simulation which is proposed, in-
formation and ideas gleaned from these studies should prove valuable in the
formulation of a SUMC simulator. The following paragraphs will present brief
summaries of the more pertinent papers and reports on existing simulators
* which have been investigated. :

*Simulation can be defined as the process of modeling the physical behavior
of one machine on another, whereas emulation is defined as a combined
hardware-software approach to simulation,

1. Space Ultrareliable Modular Computer (SUMC) Microinstruction Simulator,
Tech. Rpt. Space Support Div., Sperry Rand Corp., Huntsville, Alabama,

2. Simulating the Operation of an Aerospace Computer System, E. C. Day,
AIAA Paper No. 69-973, September 1969.

1, SUMC Microinstruction Simulator. This simulation program is
written in XDS extended FORTRAN IV and uses the Sigma 5 as the host computer,
The SUMC is, of course, the target computer and is simulated at the machine
register level. This provides a software tool for functionally duplicating SUMC
hardware operations specified by the control words in the microprogrammed
read-only-memory.

a. The simulator is programmed to:

(1) Perform solution of microinstructions in the same
manner as SUMC insofar as possible;

(2) Compute contents of reg1sters mu1t1plexers and
arlthme’uc units used to perform microinstruction solutions;

(3) Provide instruction traces or microinstruction traces
of computed values for program or microprogram analysis, respectively.

b. “The simulator is designed to operate in the following two
phases: '

(1) Initialization - accepts initial conditions and initiates
mmulatlon of appllcatlon programs;

(2) Simulation - performs application program simulation
and outputs information required for analysis,

_ c. The output information which may be requested by the user
includes: Imstruction Address Read-Only-Memory (IAROM) dumps, Micropro-
grammed Read-Only-Memory (MROM) dumps, and Scratch Pad Memory (SPM)
- dumps. Microinstruction or instruction traces of the elements required for
microprogram or program analysis may be output following execution of each
microinstruction or instruction. The trace information includes the contents
of the Sequence Control Unit, Iteration Counter, Scratch Pad Memory location
accessed, Memory Register, Product-Remainder Register, Memory Address
Register, Multiplier-Quotient Register, and Exponent Register; the status of
the Arithmetic Logic Unit (ALU) overflow, ALU1 carry latch, ALU2 carry
latch, and Exponent Arithmetic Logic Umt (EALU) overflow; and also the
address of the Scratch Pad Memory locatlon accessed.

2. IBM TC-1 & CP—2 Simulators. These are very similar simulation
programs, designed to perform interpretive simulation of flight programs written
for the IBM TC-1 and CP-2 aerospace computers, Each simulator provides a
means for the dynamic analysis, modification, and control of TC-1 or CP-2
flight programs, In doing so, the simulators assist in debugging operational

4~

modules written for the target computer by precisely duplicating operation of
the subject CPU and providing associated I/0 device handling.

a. General Design. The simulator acts as a subroutine available
to a user control program written in FORTRAN IV with an IBM/360 acting as the
host computer. The user control program can communicate information to the
simulator and obtain information in return through the following set of interface
programs: :

(1) User-written simulation control program,

(2) A set of programs comprising the interface programs,
(3) A machine instruction interpreter,

(4) Data collection routines, and

(5) Reporter.

b. The simulated execution of flight programs proceeds in three
~phases:

. (1) Accept initialization parameters (specified by the user
control program) and prepare simulator and associated interface programs for
-execution;

» (2) Perform computer simulation and collect information
required by programmer (as specified during phase [1];

(3) Process the information collected during phase [2] into
a meaningful format. '

c. The output information which can be obtained by the user
includes: '

(1) Dump of requested portion of core in a hexadecimal
format;

(2) Output of requested type of trace information; either
full trace, block trace or branch trace; '

(3) - Output of variable quantities whenever a specific loca~-
tion is reached; requires the specification of array of snap addresses, modules
in which snap items are found, addresses of snap items desired, and number of
snap items; '

(4) Comments in the form of a line of EBCDIC information;
and ' '

(5) A line of EBCDIC information to be used as a title at
the top of each output page. .

|
3. Logicon Generalized Aerospace Computer Simulator. The Logicon
Aerospace Computer Simulator (ACS) is an assembly language program which
operates on the UNIVAC 1108 under EXEC II. All input to the ACS is handled by
the 1108 assembler, which eliminates the need to write elaborate translators or

input processors.

a. Basic ACS Simulator. The basic ACS simulator is a skeletal
program which becomes complete after the user defines the target computer by
assembling its characteristics into the simulator. The four types of input handled
by the 1108 assembler are: : : :

(1) Specification of the target computer,

(2) Input of the target computer program,

(3) Construction of the interface routines, and

(4) Specification of the simulator outputs and diagnhostics.

b. Operating Modes. The user can select the number and type of
operands used by each instruction and the applicability of indexing, extension
register usage, and indirect addressing. The target computer may be word or
byte oriented with 1's complement, 2's complement, or sign-magnitude arithmetic.
Double-precision or floating point arithmetic may be included. Registers may be
in memory or may be entirely separate, and any number of registers as well as
register types can be included in the target computer specifications.

"The simulator may run in an open-loop mode or, through construction of
interface routines, in a closed-loop mode with a vehicle/environment simulator,
In any event, the target computer program to be executed may be assemhbled
directly using macroinstructions and commands to the assembler in a symbolic
format chosen by the user. :

c. Output Options. Simulator output options include timing data,
error diagnostics, traces, periodic listings.of variables, debugging routines,
and summaries printed at run termination. A more detailed explanation of the
output options available to the user is given in the following paragraphs.

(1) SNAPS - octal printout obtained by keying target compu-~
ter locations. When such a location-keyed instruction is executed, the contents
of the selected target memory location are saved. The items saved are printed
for every major or minor loop of the program. User specifies target location
to be keyed, target location whose contents are to be saved, the scaling, and the
symbolic name of the variable, -

_ (2) Print Function -~ location-keyed function that prints out
the octal contents of one target computer location. User specifies the target
computer location to be keyed, the target location to be printed, the scaling, and
the symbolic name of the variable, The scaled value is printed along with its
symbolic name. ‘

~6-

(3) Traces - full trace, in which every instruction executed
causes a trace print to occur; partial trace, in which each I/O and/or branch
instruction results in a print. Trace outputs may be started or stopped by location~
keyed functions, timed inputs, or both. There are 10 trace variables and these
can be varied by input. They are:

(a} Host computer instruction address (QHIA)
(b) Operation Code (QOPC)

(c) ~ Operand address 1 (QOPAD1)

(d) Operand 1 (QOPNOL1)

(e) Target computer accumulator (QACCUM)
(fy Target computer Q-register (QREQ)

(g) Blank field (QBLNK)

(h) Blank field (QBLNK)

(1) Blank field (Q BLNK)

)] Master clock in cycles (QMTIME)

(4) Data Tapes - SNAP print sets may be written on tape in
addition to being printed.

(5) Clocks - six clocks are available for timing execution
between selected instructions and are controlled by location-keyed functions. A
clock may be turned on or read.

(6) Error Diagnostics - as each input or simulation error
is discovered, an error diagnostic is printed indicating the type of error and
action taken,

(7) Summary Information - max and min values of snapped
variables are printed; the number of times each instruction is used and its sim-
ulated op code are printed; a dump of the target memory is printed. An asterisk
before the word indicates that an instruction has been executed from that location.

B. Other Related Computer Simulators

The simulation studies described in the previous section merit special
attention since they represent interpretive simulators having many of the charac-
teristics envisioned for SUMC. However, some other existing simulators, which
are not directly related to the SUMC simulation, have also been investigated,
Table I contains information on the most prominent features of these simulators.

C. Summary and Conclusions

The simulator envisioned for use in checkout of SUMC programs will be
constructed to handle the simulated machine at a block diagram level. This is

WYY¥90dd TOYLNOD HILNDWOD R
C'SNOILONNG 0/1 - ANIHOVW L3oyVvL "YW AMOWIW LW ONI¥IVdId | wvaovia aLn zmou_ue...__.q” __m
: d 9
¥0d4 @3sn 33V S3INLLNOY JHL 40 .,31V1S,, 'NOILdI¥DS3a reos wal -473s plelolnt:} dvwal 3 i :wﬁ_u -u_._wm
NVYL1H0d QYVANVLS 40 SLOHSJVYNS ANIHOVYW 34AL0L0¥d ONitvd3d
SYILIWVYVJ om.ﬁaoz.uz_mm ¥055320ud
*SNOILDNNL ¥3LNdWOD HNIAVYO0T ‘s3Nand SINIWLIND3I 09¢ - [L1nwW
. : TIVNOILONNA | <098/55D 09€/552
INITIAOW A¥VYMOL 0/1. ANV WY Y9 0ud SINIWIHINDIY /WILSAS Wgl d3-id v ,
a3y¥o0TUVL ATTIVII41D3dS ‘NOILYWHOANI ONIWIL NOILYLNdWOD /NI LSAS Wl
"L1g-yo0d4-1lg . £%1513d0W
SNOILDNYLSNI
LON FdV HOIHM sLINs3d - XI4L1VW LHI14 ANIHOVW 060 Wgl 43LNdWOD JAILIULYILNI NVIL¥Od S0211
NOILYINWIS HLIM Q35N §I ‘NOILVYWYO4NI 3DVyL 3IDNVAINo)
d02svyglT
IYYMOYVH INIHOVW LSOH 3d0DsVY 3d40Dsvygll
SWYY¥90y4d
*a3ss3y 1S : 39VNONVT :
: SOILSONOVIA 1 DVINVW V0L8=13S [FAILIYLYILNY dVIAVW VW3S
N339 LON SYH ADNIIDId43 ANIHOVW _ _
volg-13s .
"JOVNIVH NOILYINWIS _
S
40 L¥Vd SV A3QNIONI LNIWdIND3 - d3LN3Ro
NOILVWHOLNI 3DViL IVY3INI9 TvY3IN39 ¥31$193Y 02512
YV YILIYLUILNI ANV 40 NOILJI¥DS3A ~1/7d
‘434aV0T "¥43dW0D 0251
NOILYINWIS _
YI1NdW0D | 33 LNdWO0D JOVNAONY
- LNIWWOD - 1lndino 1NdNI H0 : JOLVINNWIS
1SOH 132¥vVl. 93A31 NOILYTINWIS

SYOLVTINWIS A3LVTIY ¥3IHLO "T378VL

|
contrasted with a functional simulation which is too far removed from the hard-
ware for the purposes of this project or to a logic simulation which leads to
excessively slow simulation and yields results which require considerable reduc-
tion. The SUMC simulator will be an interpretive simulator in which all program-
mable registers are maintained. The simulator will also maintain a memory map
of the target computer and simulation results will precisely duplicate those which
would be obtained by the target machine.

The SUMC simulator will resemble certain existing simulators which have
been developed for aerospace computers. The TC-1 and CP-2 simulators are
examples of interpretive simulators which have been developed for use in checkout
of flight software. The Logicon Generalized Aerospace Simulator is another
example of interpretive simulation designed to provide target computer program
checkout. However, the SUMC simulator will be unique in the sense that sim-
ulation of a family of SUMC machines will be possible, In addition, the simulator
will be programmed in a high-level language so that host machine independence
is achieved to the fullest practical extent,

SECTION III. CONSTRAINTS ON THE SIMULATOR FUNCTIONAL DESIGN

A. Baseline Target SUMC

The simulator must have the capability to model the SUMC family. This
computer family is expected to consist of computers with design parameters
that may vary with the envisioned application. Of particular interest to the
simulator design are the SUMC definition parameters given in table 2, The
simulator must provide and maintain the contents of pseudo registers and
storage locations that appear to be identical to these parameters:. These pseudo
locations must be updated by the simulator at the level of visibility of the pro-
grammer,

1. Storage Organization, The target storage for simulation programs
of the SUMC will consist of a main or bulk storage in which programs and data
reside with an accompanying scratch pad memory (SPM) which contains various
register contents, status indicators, the program counter, and other variables
with requirements for rapid access. To ensure generality in the simulation no
other assumptions concerning storage will be made. Specific storage organiza-
tions will be provided as input parameters to the simulator.

2. Register Organization. Although register organization is, strictly
speaking, a subset of storage organization since register contents reside in
SPM, conceptually the various classes of registers can be considered logical
entities for purposes of discussion of their organization. The simulator must
accept descriptive input, discussed more fully later, that specifies this register
organization and format for an arbitrary SUMC. A typical pseudo register
representation of a SUMC is shown in figure 1.

Conversion of the descriptive input into the pseudo register organization ’
will be discussed later. This conversion must be valid for the range of param-
eters shown in table 2 to permit the simulator to accept the variety of SUMC
designs anticipated for future space-oriented missions.

3. SUMC Instructions. Computer commands defined by the Op Code
segment of an instruction are implemented by software subroutines: Each sub-
roufine, in addition to performing SUMC operations at programmer level of
visibility, must update the elapsed time counter for the program and must con-
tain any unique error response procedures. The initial version of the simulator
will have the capability for executing the basic SUMC commands(3),

3. IBM Systems Reference Library, IBM System/360 Principles of Operation, .
GA22-6821-8, Systems Development DlVlSlOll Product Publlcatlons Pough-
keepsie, N. Y., November 1970,

-10-

Table 2. Critical SUMC Design Parameters

Minimum Maximum Increment

Word Length (bits) 16 32 4
Accumulators 1 16 1

| Base Registers 1 16 1
Index Registers 1 16 1
General Registers 0 16 1
.Scratch Pad Memory (words) 64 TBD* TBD

| Main Storage (words) 128 TBD

32,768

"*TBD To be defined

-11-

1MNOAVT ID9VYOLS NIVI¥ GNY AVd HOLVYIS NS ° T ain3; 4

NOILVLNISIYJIY NVILYO4 ¥ILNJWOD LIOAVL

£942€ .) £9
o 91s dW3L &
£z
SALVLS F24
SALVLS LduiNI 1z
]) 3d 0z
1531 ¥3aNn X sl
Wv3203¥d 8l
Lt
g 91
sl
v
0 0

~-1la-

°

(0.1N0J) ._.=o><._ J9YYO0LS NIVI¥ ANV QVd HOLYHIS JNNS °T aundi4

vao0T9o viva

89L%¢

1s31 ¥3aNN
WYy90ud

t

{LIWNIVW!

FENSEEEWETLEL
WIANIVIWaY 1onaoad | .
)
<~ w
513
SALVLS £z
SALVLS INI 2z
WILNNOD WY3508] 12
0z
X 61
81
8 0
(91)
v .
(LUWdsI

39VYO0LS OWNS 40 NOILYLNISIUJIY NVHLIOd LSOH TYIIdAL

-11b~

4, Input/Cutput (I/0). The simulator must perform I/O operations in
conjunction with a software interface and peripheral device simulation subroutines
as shown in figure 2. The simulator will maintain the appropriate status informa-
tion in the COMMON scratch pad memory representation and will additionally
place and retrieve data in the Product Remainder Register (PRR) location in
COMMON. Peripheral Device simulation subroutines act in a corresponding,
cooperative manner, Peripheral device elapsed time will be maintained by the
peripheral device simulation subroutine.

Handshaking protocol must be defined as more specific information becomes
available, Presently the I/0 process simulator will:

a. Place the datum in tﬁe PRR,
b. Set/Reset appropriate status, and
c. Issue a CALL to the specified peripheral device simulator.

Upon completion, control will be relinquished to the simulator.

4 5, Interrupt Procedures. The simulator will emulate the SUMC sequence -
of detecting and responding to an interrupt as demonstrated in figure 3. Prior to
each instruction FETCH the simulator will interrogate the scratch pad memory
(SPM) interrupt status word for presence of interrupts. If interrupts are present,
each bit in the word will be examined for an interrupt request (=1). For each of
the above interrupt requests a response subroutine must be provided. This
response subroutine will be calied, and the request bit reset. When all interrupts
have been serviced, the simulator is free to FETCH the next in-line program
instruction. ‘

This interrupt simulation procedure allows program debugging in order
that an operating system with its allied applications programs can be verified
using the simulator.

B. Simulator Operating Environment

Presently the simulator is thought of as executing in a batch mode under
the operating system of large commercial computers. Candidate computers
are the UNIVAC 1108 for production, and the IBM 7094 for development. This
difference in host computers implies a design goal of machine independence to
the feasible limit. This goal conflicts with the requirement that the simulator
utilize host machine hardware to a high degree in the execution of target computer
instructions, Candidate host computers must be studied to assess the impact of
computer hardware differences on utilization of host computer hardware in a
machine-independent environment,

Initial versions of the simulator will run in the batch mode as an applica-—
tions program and will be self-contained; for instance, I/0O statements will be

~-12-

L !

zo_._.<o_z:§,moo 301A30 TYUIHIYId-HOLYINRIS °Z ammdid®

A= 1S3y ¥IANIYWIY LONaoAd

¥9
SNOILLYD07 6€
3OVE0LS AYVIOdWIL

43151934 SNLVLS 1dNA¥J3LNI

saNILNoYAns
NOILVINWIS
321A3a
BAZ-ELCI-ET

SAILSID2Y XIANI

¥31S1938 SNLVLS YOLVIIAN]

SA31Si93y 3svd

43 LNAO0D WVEO0YUd

91

SYOLYINWNDDY

Lo

JOLVINWIS

WdS!

-18-

. - 3NILNOYENS JJIAYIS B NOILITLIA LANUYILN] ¢ aingy 4

X3dNI \
LdN¥YIALNI *Mwmmmmnm < 1t @adIANES
LNIWIHONI L , SLdNYYILN
EN
1 1$3Nnd3y L3s3y
{ ANILNOY 3DiAY3S
S 1dNYAILNI 17VD
$:3A1L0V |
. LdNu¥ILNI
W
i x3anI
LdN¥¥ILNI 0¥3Z

silg snivls

+:LdNYPILNI
ANY

_ 11l

QUOM SNLVLS LdNYYILNI AJOWIW GVd HOLVAUDS

-13a-

utilized for job description input. Later versions may utilize job control language
options of the operating system to perform input of job description parameters
such as snap, trace, or dump functions. Early versions of the simulator will
exhibit minimum interactions with the host computer operating system, while
later versions may utilize facilities provided by the more sophisticated operat-
ing systems. Additionally, the requirement for program transfer among several
computer installations impacts program modularity. Specifically, the simulator
must be constructed as a set of quasi-independent modules, regulated by a control-
ling module as shown in figure 4 and defined in table 3. Host computer dependence
must be constrained to the minimum number of these modules, preferably to one
module. This strategy permits transfer of the simulator among host computers
with minimum interference and program modification.

C. Simulator Development Environment

Development efforts will take place utilizing the IBM 7094 computer as the
testing environment. This model computer, however, is not expected to be the
primary host computer for production versions of the simulator. The fact that
production host computers will be different from the development host computer
impacts the trade study relating machine independence, utilization of host compu-
ter hardware, and program execution time as noted. The folloWing will denote
specific instances in which carefully detailed functional design is required to
circumvent conflicts generated by the chosen development process.

The input development language will be FORTRAN IV (4), This high
level language is a descendant and extension in capability of FORTRAN. This
language capability is considered intermediate between FORTRAN II and FORTRAN
V. For development of the simulator on the IBM 7094, FORTRAN IV provides
the capability of FORTRAN II, with the additional ability to use logical variables
and to perform single bit manipulation. Relevant to us, FORTRAN V, available
on the UNIVAC 1108, would permit byte (subword) designation and operation, an
important enhancement for construction of the simulator. '

Considerable effort has been invested in the development of additional.
supporting software for the IBM 7094(3), Results of this work were carried
forward into the implementation of the support software for the UNIVAC 1108.

4. 'IBM Systems Reference Library, IBM 7090/7094 IBSYS Operating System
Version 13, FORTRAN IV Language, GC28-6390-4, IBM Programming &
Publications, New York, N. Y., November 1968.

5. MSTFC, Marshall Space Flight Center, Preliminary Reference Manual fdr
the IBM 7094, Huntsville, Alabama.

-14-

WYY9YIQ ALIYYINAON ¥OLYINWIS b aimdLd.

3 1NAOW-HOVI ¥0d4 AYVWANS TVNOILONNA V SNIVLNOD "¢ 3778VLl :3LON

ERTCED HO¥V3s
viva LdNAYILNI FREAAY SOLLSILYLS ¥awiL SINILNOYENS] | ¥OSSIJ0Ud | INOILVNIWAIL 1Nl
gnuyaL) AR : . NOILINYLEN! 150d youu3
o NOIL
nzwwwn*o >mxaﬂnou HDL3d ¥3ZITVILINI ~Y¥N9I4NOD NOLLdI¥SS3d ¥0s5350ud
¥ILNdWOD aor 3dd
ANITNIYI
¥OSIAY¥HANS
SHNS

Table 3. Program Module Definition

Program Modules Function Summary

Preprocessor Reads output of the Link Editor and transforms it to the appro-
priate internal host machine format for execution by the simula-
tor.

Job Description "1 Reads input parameters designating the selection of trace

options, run size, execution time limits, storage boundaries
and other pertinent information associated with this particular.
simulation run. :

Computer Inputs descriptive parameters defining the SUMC configuration

Configuration - to be considered the target machine for this simulation.
Initializer Sets the initial conditions in simulation variables, e.g. SPM,

based on input parameters and Link Editor output, and builds
key tables.

Mainiine Controls execution of other program modules including overlay
control, if required.

Fetch Gets the next target computer instruction for execution,
extracts sub-fields for Op Code, Registers and Operand def-
inition. Checks interrupt status.

Op Code Key) Searches the Op Code request table for action based on Op
Code key, calls appropriate response subroutine.

Operand Key ' Similar to Op Code key, above, but searches the Operand
request table, '

Op Code Table Search Searches Op Code table for match with instruction Ob Code,
performs error checks, calls response subroutines.

Instruction Subroutines | Target computer instruction set is simulated at the level of
visibility to the programmer. '

Timer- Maintains a cumulative record of calculated target machine
elapsed time for program execution,

Print ‘Prints output as requested by a calling subprogram.

Error Termination Handles abort situations arising from anomalies in the program
under simulation. ‘

Post Processor Handles termination of a simulation run outside of the failure
mode. Run parameters are output based on selection.
Utilizes Summary routine, Print routine.

Statistics Tabulates and outputs pertinent program measurement parain—-
eters such as number of executions of a specific instruction.

Interrupt'Sei‘vice Provides the response demanded i)y an interrupt condition,

Data Data required by all program modules (global) will be avail-
able in COMMON and will include SPM, Main Storage and sub-
routine communication variables. Temporary storage and data
unique to a particular sub-program may be allocated within the
sub-program.

-16-

. '(
We must utilize this IBM 7094 software for enhancement of the baéic FORTRAN IV

input language and for a similar carry-over to the U1108 to permit a closer
approach to machine independence. -

-17-

SECTION IV. FUNCTIONAL REQUIREMENTS AND DESIGN CONCEPTS

A. Methodology Overview

1. Simulator Interplay with SUMC Development Software. The SUMC
interpretive simulator is an important member of a well-conceived set of programs
devoted to support of the SUMC family as shown in figure 5, Integration of Simulator
into SUMC Support Software, As indicated, the simulator must operate under
control of a subexecutive in the UNIVAC. 1108 operating system. Programming
generation will proceed from translation of input statements, either high level
language or assembler statements, into relocatable modules; relocatable modules
are put together and converted to a computer load module by the Link Editor.

The load module is executed on a SUMC, either a hardware SUMC or a host -
computer-microcode-software entity simulating a SUMC. The simulator must
enact the role of the software portion of the above entity.

2. Simulation Mode. The simulator will operate interpretively by
examining each target computer instruction to determine the functional response
required and subsequently accomplishing the functional requests through use of
the host hardware. Fidelity in yielding the correct result for an arbitrary instruc-
tion is the criterion rather than fidelity in executing the precise SUMC sequence
to obtain the result. Determination of the validity of a result will occur at the
level of visibility to the programmer. This means that, during an execution
sequence, the simulator must maintain the contents of computer storage that
are available to the programmer and is not responsible for registers, status
indicators and other computer information storage not available for reference
by the programmer, '

3. Simulation Process. The simulator requires a Link Editor or
other identically formatted input of the program under test accompanied by
further job description and computer configuration identification parameters,
which are utilized to select the trace options and to establish the pseudo.
register and storage layout representing the target SUMC.

A set of program: modules required to accomplish the simulation funetions
and a functional logic flow diagram for the overall interpretive simulation is '
given in the Appendix. The process of simulation occurs in the following phases:

a. Input of job description, computer configuration, and program
memory map;

b. Definition of the target SUMC configuration;

-18-

JYYML40S L¥04dNS JNNS OLNI OLVINWIS 40 NOILYYIILNI °G 31§

NOILYWHO NI
TOHLNOD — — —
517053y
$37NAOW avo
% oWnS .
¥oLvinwis | $37NAOW
-
o¥IIW s1ans3y $31NaoW avo WYH¥90Y4d
SWNS 379VvivVO01I3y
| IVH
| 1/1d
| ¥I9Wassy YOLYINWIS HOLIAI NI e ¥I1GWaSSY NYHLNOS »ﬂﬂmm&u.
0UDIW 31na
“ SUATIAWO0D
_lll._l..l.l.llll.ul_lallll. —_—

!

|

- 40siA¥3dNsS
JWNS

¢

4
|

W3 LSAS
ONILVY340
8011

-19-

c. Decomposition of target program instructions, register
identification and effective address calculation; :

d. Error checkihg;
€. Trace, Dump and Snap implementation;
f. ~ Instruction interpretive execution;
| g. Printout of requested results and/or error notification; and

h. Exit to SUMC Supervisor upon detection of end of program.

The level of effort required for implementation of the above functions is
dependent upon the sophistication of the debugging options provided. Simulation
execution times are similarly dependent.

B. Imput Requirements

1. Computer Configuration. The SUMC has been designed as a highly
modular machine and is therefore capable of being configured in a great number
of different ways. This characteristic presents a unique problem in the simula-
tion of such a machine in that the simulator must be capable of processing flight
programs for any particular SUMC configuration. The simulator for the SUMC
family of machines must therefore be designed such that the user, with a minimum
of effort, is able to specify the exact SUMC conflguratlon or environment in which
the flight programs will be run,

a. Word Length, Since the SUMC is a 4-bit byte modular compu-
ter different configurations may have different word lengths, It will be necessary
to design the simulator so that SUMC programs may be run which have been
"~ written for 16, 20, 24, 28, or 32-bit word length machines. It will of course be
“required that the user supply information on target machine word length.

b. Scratch Pad Memory Size and Organization. The organization
of the SUMC Scratch Pad Memory (SPM) is another area of design which is inher-
ently flexible. The designer may choose to maintain a minimum of SPM or he
may choose to include a rather extensive SPM layout. In addition, the registers
which make up the SPM may be organized in many different ways. These SPM
registers are programmable registers and as such will be maintained by the
SUMC simulator. This will require a user-supplied definition of SPM size, in
words, and also SPM register layout.

c. Main Memory Size and Organization. The size of the SUMC

main memory will be variable from one configuration to the next. It will there-.
fore be the responsibility of the user to specify target machine main memory

-20-~

size in some way. This will be the only memory specification needed if it is
assumed that main memory consists of a fixed number of contiguous storage
locations. However, if it becomes necessary to partition main memory into
blocks of contiguous storage, the memory specification problem will become
considerably more complex.

d. Floating Point Instructions., The SUMC may be configured
to include a floating point arithmetic unit which adds considerable depth to the
associated instruction set. Since the absence of a floating point unit results
in a much less extensive instruction set, the set of floating point instructions
will be included in the target machine instruction set only when user input
requirements specify floating point capability.

e. Special Instructions. The simulator will perform the execu-
tion of target machine instructions through the use of subroutines. The basic
capabilities of the SUMC will be simulated using a fixed set of instruction sub-
routines. However, additional subroutines may be called by the main program
in the event that target machine capabilities dictate their usage. The addition
of floating point routines as described in the previous section is an example of
this. In a similar manner, any other special instructions such as Input/Output
which must be included as part of the simulator must be specified as part of the
input requirements. In addition, any special instructions which are specified
must be present in the complete library of instructions which are available to
the simulator. It should be pointed out here that the SUMC is a microprogram-~
mable machine and therefore could be capable of implementing a virtually infinite
number of machine instructions. The possibility would certainly exist that a
special instruction is not included in the library of subroutines, in which case
an error message could be output to the user.

2. Job Definition. In addition to speéifying the SUMC configuration,
the simulation job definition must also be supplied to the simulator. In defining
a particular simulation, the user must provide:

Target program entry point and boundaries,
Target machine initial condltlons,

Simulation output, and

Number of simulation runs and time for each.

po T

The user's method for specifying the SUMC program entry point will
simply consist of a first word address which is supplied for each target program
to be run. The simulator will read the designated first word address, make an
appropriate transformation to obtain the host machine address, and begin the
simulation with an instruction FETCH from this location.

The user will provide target machine initial conditions for all volatile
registers by means of a map of SUMC Scratch Pad Memory. This is possible

-21-

/

8
since the SUMC architecture provides for location of all programmable registers
in Scratch Pad Memory.

The output information provided by the simulator will depend heavily on
the specific data which is requested by the programmer.” A number of different
output types, such as memory dumps and instruction traces, will be available
to the user. A number of different options will also be available for each basic
type of output. A detailed explanation of the types of output which will be ava11-
able is given in the next section. :

Finally, in the event that a number of simulations are to be run in succes-
sion, the user must specify the number of runs and also the maximum allowable
run~time for each simulation. A maximum run-time will be designated in terms
of both simulated elapsed time and host machine run-time,

_ 3. Link Editor. The SUMC Link Editor will be capable of generating
a complete map of the target machine main memory. This simulated main
memory map will be the primary input to the SUMC simulator. Once the sim-
ulator is provided with the initial conditions for SPM along with the address of
the first target instruction, simulated execution of SUMC flight programs will
proceed according to the instructions and data present in the SUMC simulated
main memory.

C. Output Requirements

1. General. The output specifications for the SUMC simulator will
include both standard forms and special forms of diagnostic aids. Since the
purpose of the simulator is primarily one of testing and checkout of SUMC
flight programs, output diagnostics will perform one of the most important -
functions of the simulation program. The SUMC simulator will make available
to the programmer several different types of output diagnostic aids. Each type
of output will also have a number of options available so that different levels of
output information can be obtained from the program at the discretion of the
user., The following paragraphs will describe the output optmns which will be
available for use when simulating SUMC programs.

2. Dumps. The user will be concerned with memory dumps for both
the simulated SUMC main memory and Scratch Pad Memory. Three types of
memory dumps will be available to the user, all of which yield a listing of
specified memory contents in an octal format. They are: '

. a. SPM-Dump. An output listing of the octal contents of each
SPM location. An SPM dump will be available to the user following the comple—

tion of any target machine instruction,

b. MM Dump. An output listing of the contents of each main
memory location. A main memory dump will be available to the user following

29—

termination of a target machine program regardless of the cause of the termina-
tion, ‘

c. Block MM Dump. This output listing will be the same as the
complete main memory dump with the exception that only the memory information
between selected locations will be dumped.

3. Traces. Several different types-of instruction traces will be avail-
able for use when the contents of certain key registers are of interest to the

programmer,

a. When an instruction trace is in effect, the following informa-
tion will be outputted after execution of each applicable SUMC instruction:

(1) Instruction Register contents,
(2) . Program Counter,
(3) Next Program Counter,

- (4) Contents of Accumulator, Base and Index Registers
used by the instruction, '

(5) Operand Addresses and Operands used by the instruc-
tion, and

(6) Contents of Status Registers.

b. The four different types of traces which the user will have the
option of using are: : :

(1) Block Trace. Contents of key registers will be outptitted
after each instruction execution in a specified block of instructions.

) (2) JUMP Trace. Contents of key registers will be out-
putted after execution of each JUMP instruction. '

‘ (3) TEST Trace. Contents of key registers will be out-
putted after execution of each TEST instruction.

(4) Keyed Trace. Contents of key registers will be out-
putted after each instruction which involves a keyed op code, address, or address
contents.

4. Snaps. This debugging aid is similar to the keyed instruction trace
in that information is outputted whenever a specified op code or address is

-23-

t

encountered, The contents of the same key registers will be outputted, but in
addition, the contents of programmer specified main memory locations will be
printed. The user will provide snap codes and arrays of snap addresses.
Addresses of snap items desired and number of snaps desired must also be
specified. ' ‘

5. Error Messages. As each input or simulation error is discovered,
an error diagnostic will be printed indicating the type of error and action taken.
The error messages will always be outputted in the event of program recogniz-
able errors and the user will not have the option to-delete error messages.

D. Language Requirements

The SUMC simulator will be designed so that a number of different target
computer configurations may be simulated and also so that a number of different
host computers may be employed in performing the simulation. The latter has
an impact on simulator source language requirements. In order to meet the
requirement of host machine independence, a high level language must be used;
-however, the source language which is chosen must also be acceptable for pro-
cessing on many different host machines. FORTRAN IV will be used as the
simulator source language since this language comes closest to meeting both
of the stated requirements, Although FORTRAN IV is fairly universal in its
use, careful attention will still be given to maintaining machine independence
since FORTRAN program processing capabilities differ from one machine to
the next. :

E. Future Simulator Enhancement

The basic simulator is designed to be independent of the host computer
operating system. Given a system supervisor program for all SUMC develop-
ment software, the simulator can be modified to utilize features unique to this
supervisor. Allocation of some of the functional responsibilities from the sim-
ulator to the supervisor permits amplifying programming capabilities.

One promising area for this shift concerns the problem of causing a "snap"
using variable names in place of addresses. I the system supervisor can recognize
job control commands such as SNAP, then a possible program input could be the
following: ' '

SNAP COSBETA, ALPHA, SINGAM.

This command could cause output of the current values of the variables COSBETA,
ALPHA, and SINGAM to a designated output device., The system supervisor would
handle all variable symbolic translations. Similar features would allow ready
programmer accumulation of other debugging data using variable names as operands
for the system supervisor.

—24-

In considering future development paths for the simulator, the use of an
on-line time-shared terminal must not be ignored. To utilize the terminal
effectively, capability must be added to permit the programmer to interact with
the simulator during execution. The programmer must have the power to halt
simulation, examine or modify any location, and to perform any function present
in the initial version of the simulator.

As the SUMC development proceeds, requirements for high data rate
peripherals such as disks, drums and CRT displays can be expected. Such
considerations, while not directly affecting the simulator functional design,
impact to the extent that the design must permit ready expansion at some future
data dependent on SUMC support software development trends.

—25-

SECTION V. CONCLUSIONS AND RECOMMENDA TIONS

Study of active and historical efforts in simulating computers coupled
with experience in similar applications indicates that the most fruitful imple- -
mentation process is stepwise, The SUMC family interpretive simulator,
therefore, will be first implemented as a modular program designed to allow
convenient expansion. The initial version will constitute a basis for an extended

version which possesses additional capability noted in table 4, Phased Simulator
Development, : '

CSC believes that the SUMC interpretive simulator can permit verifica-
tion of SUMC software with considerably less effort than would be required by
utilization of the prototype computer hardware. '

-26-

ooustaodxs _Hmcmuﬂmmomo £q A1eSS999U POUISSD SUOTIBOIIIPOIA

u01309S snotasad UI pajou SoTITIqeded I9YI0

S9UIINOIQNS UOTBINWIIS 99149p TeIoydraad Jo uomBiuswsidwl pur usisap pajrelaq
Joje[nwIs ay} jo sjuowdes jo Surpoo odendue] A[quIessy

aat103a8dad UOTJONIISUI OISB(JO UOISuBAXH

JOJBTNWIIS POPUSIXT

aIBM]JOS SW)SASs [ejul Surddngep jo siqede)
uotsuedxs JUSTUIAUOD J0J papua-uadp

90BL], 1S9], pue 208 dwinp ‘9oevi] }oolg ‘deug
L111qedes aovjasjur ndingd \.uzaﬁ

Lrigedes jdnaxejug

(mvmﬁoﬁmaop UOT}ONIISUT OISBY

$31q 2€-91 woxy Surdxea ypSua] paom DINAS

o . . spxom 31gg o1 dn
- 99810]Q UIB - SPIOM $9 - AJOWSI PBd YoleieS xo] A[Twe] DINNS JO UOTIB[NUWIS

I0JB[NWIIS [BTU]

- squswoIInbay [rUOTIOUNT

juowdoloAs I01B[NUNS PasSBYI ¥ O[QEL

27— .

APPENDIX: SUMC SIMULATOR ANNOTATED FLOW CHART

The operation of the Simulator is depicted in the following flowchart
(figure A-1). Note that the operations required to execute the interpretive
simulation are shown along with explanatory comments to clarify functions
of the Simulator,

—98-

SIMULATOR
INITIALIZATION

INTERPRET
NEW
CONFIGURATION
PARAMETERS

CALCULATE SPM LOCA.
OF ACCUMULATOR,
. BASE, INDEX REGISTERS,

INTRA-WORD
SUBFIELDS

[INTERPRET
JOB DEFINITION.
PARAMETERS

IF NEW PARAMETERS ARE INPUT USING JOB CONTROL
LANGUAGE (JCL) CARDS, THEN READING IS UNNECESSARY,
IF INPUT IS RESPONSIBILITY OF PROGRAM, THEN CARDS
MUST BE READ.

BASED ON INPUT PARAMETERS, PSEUDO REGISTERS
(SPM LOCATIONS) ARE MAINTAINED IN HOST MAIN
STORAGE. '

IF PARAMETERS ARE INPUT VIA JCL, THEN READING IS
UNNECESSARY. INPUT PARAMETERS DESCRIBE NUMBER
OF RUNS, TRACE, SNAP REQUIREMENTS, RUN TIME
LIMITATIONS, AND OTHER DESCRIPTIVE VARIABLES

REQUIRED FOR EACH RUN.
&

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 1 OF 7)

SIMULATION REQUESTS CAN BE STACKED.

QTHIS RUN DONE 7 5

RETURN TO THE SYSTEM SUPERVISOR. -

IF COMPUTER CONFIGURATION PARAMETERS ARE TRANSFERRED

GET OUTPUT OF USING THE LINK EDITOR, THEN PRECEDING INPUT METHOD

LINK EDITOR ' MUST BE REVISED. LINK EDITOR OUTPUT MAY BE TRANSFORMED
TO A MORE CONVENIENT FORMAT BY THE PREPROCESSOR
ROUTINES.
INITIALIZE -
' STOR AND RELOA S
HOST & TARGET ~ZERO STORAGE AND RELOAD REGISTERS AS
REGISTERS, DEFINED BY INPUT PARAMETERS,
MEMORY
« 2B
UPDATE SUMC UPDATES COUNTER BEFORE FETCHING
PSEUDO LOCATION AN INSTRUCTION.
COUNTER (PCTR) .

MUST CHECK INTERRUPT STATUS WORD IN SPM,

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 2 OF 7)

-30-

INTERRUPT SERVICE SUBROUTINES MUST BE PROVIDED.

INTERRUPT
SERVICE
ROUTINE i

ALL INTERRUPTS ARE CHECKED,

EXCEEDED RUN LIMIT IS PROVIDED AS AN INPUT PARAMETER.
RUN LIMIT

. ?

ERROR ' PROBABLY CAUGHT IN A LOOP.
TERMINATION

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 3 OF 7)

-81-

GET NEXT
INSTRUCTION

SNAP, TRACE ISDESIGNATED UTILIZING AN

- TRACE OR NO APPROPRIATE INPUT PARAMETER,

SNAP REQUEST

OUTPUT TRACE
OR
SNAP DATA

r

SHAKE OUT _ -
OP CODE FROM OP CODE SEGMENT. IS EXTRACTED FROM THE

INSTRUCTION INSTRUCTION WORD.,

""HALT’' TERMINATES THE RUN, ALL PENDING
NO OUTPUT IS PRINTED, NOTE: OTHER TERMINATION
CRITERIA MAY BE USED.

y 51T
; 'HALTH OR "END” >
" ?

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 4 OF 7)

-39-

TERMINATE

SEARCH TABLE
FOR OP CODE

FOUND VALID OP
CODE "IN TABLE.

OP CODE ERROR

5A

OP CODE ERROR MESSAGE FOUND
INVALID OP CODE,

i

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 5 OF 7)

-33- .

OP CODE
KEYED REQUEST
?

.4 v PREDEFINED ,ACTION FOR PRESENCE OF A
SELECTED OP CODE,

OP CODE KEY
REQUEST ROUTINE

-t
EACH NON-BASIC INSTRUCTION WILL BE
IMPLEMENTED AS A SUBROUTINE. BASIC
e COReN ‘ INSTRUCTIONS CAN BE CODED IN LINE
SRR oN, (SUBROUTINE LINKAGE OVERHEAD GREATER

THAN EXECUTION TIME).

OP CODE i A TYPICAL INSTRUCTION WILL BE EXECUTED
SUBROUTINE USING THE FOLLOWING SEQUENCE OF
- : OPERATIONS,

INITIALIZATION

FIGURE A-L, SIMULATOR INTERPRETIVE OPERATION (SHEET 6 OF 7)

-84~

REQUEST
ACTIVATED BY
APPROPRIATE
INPUT
PARAMETER
VALUE.

PREDEFINED
RESPONSE TO
KEY REQUEST.

FETCH REMAINING
INSTRUCTION.
SUB-FIELDS

¥

ERROR
MESSAGE

VL

REQUEST SERVICE
SUBROUTINE

INSTRUCTION

ERROR
TERMINATION

o)

OP CODE
EXECUTION
VIA SOFTWARE

%

ERROR
MESSAGE

ACCUMULATOR, BASE, INDEX AND .
DISPLACEMENT FIELDS ARE SEGREGATED BY
THE FETCH SUBROUTINE, ADDITIONAL
OPERANDS MAY BE ACCESSED AS REQUIRED.
LLOCATION COUNTER (PCTR) MUST BE .
UPDATED TO ACCOUNT FOR ADDITIONAL
OPERANDS,

VALIDITY CHECK ON EXTRACTED
PARAMETERS (E.G,RANGE).

SOFTWARE EXECUTION WILI. BE AT THE
LEVEL VISIBLE TO THE PROGRAMMER,

ALL FUNCTIONS UNIGUE TO AN INSTRUCTION
MUST BE EXECUTED HERE.

FIGURE A-1. SIMULATOR INTERPRETIVE OPERATION (SHEET 7 OF 7).

-35-

10,

REFERENCES

Techniques in the Generation of Support Software for the SUMC
Functional Requirements, Tech. Rpt., MDAC Contract No.
NAS8-27202, August 19, 1971,

Techniques in the Generation of Support Software for the SUMC -
Preliminary Design Specification, Tech. Rpt., MDAC Contract
No. NAS8-2%202, aAugtst 19, 1971, ‘

‘Program Description - Generalized Aerospace Computer Simulator,

Tech, Rpt. No. CS-6921-R0O128, Logicon, August 1969,

Shuttle Computation System, E. Eastin, Contractor Rpt. SP—23370252 |
prepared for MSFC by Sperry Rand Corp. under NASA Contract No.

NAS8-20055, Huntsville, Ala., June 8, 1970,

MSFC Advanced Aerospace Computer, E. Eastin et al, Contractor
Rpt. SP-232-0384 prepared for MSFC by Sperry Rand Corp. under
NASA Contract NAS8-20055, Huntsville, Ala., July 6, 1970.

Proposed Instruction Set for SUMC System, E. Thompson et al,
Contractor Rpt. SP-232-0405-1 prepared for MSFC by .Sperry
Rand Corp. under NASA Contract NAS8-20055, Huntsville, Ala,,
September 4, 1970. .

"LICOS - An Interpretive Simulation of the Librascope Computer

Model-1 and Model-3, M. McLennan, Contractor Rpt. prepared
under NASA Contract NAS3- 3232, December 20, 1963,

Simulation of the SEL-810A Computer on Maniac II (SELMA),
N. Metropolis et al, Report prepared by Los Alamos Scientific
Laboratory of the University of California, Los Alamos, New
Mexico, November 1966. -

A Burroughs 220 Emulator for the IBM 360/25, T. A. Schoen and
M. R. Belsole, Jr., IEEE Transactions on Computers, July 1971,

Microprogramming: Principles and Practices, S. S.-Husson,
Prentice-Hall, Englewood Cliffs, N. J., 1970.

-36-

11.

12,
13.
14.
15.

16.

17.

18,
19,
20,

21.

RETFERENCES (Continued)

IBM Systems Reference Library, IBM 7090/7094 Support Package
for IBM System/360, C28-6501-2, IBM Programming & Publications,
New York, N. Y., 1964. ‘

FORTRAN IV Computing and Applications, R. L. Nolan, Addison-
Wesley Publishing Co., Inc., 1971,

Programmmg the IBM 7090, J. A. Saxon, Prent1ce Hall, Inc.
Englewood Cliffs, N, J., 1963.

.Computer Software, I. Flores, Prentice-Hall, Inc.-, Englewood

Cliffs, N. J., 1965,

Investigation and Simulation of a Self-Repairing Digital Computer,
I. Terris, University Microfilms, Inc., Ann Arbor, Mich., 1965,

'IBM Systems Journal, Volume Eight, Number Four, 1969, pp. 251-350.

The Use of Simulation in the Design of a Real-Time, Multiprocessing

Computer System, C. E. Price, Fourth Annual Simulation Symposium
Record of Proceedings, Gordon and Breach Science Publishers, New

York, N. Y., 1971,

The PMS and ISP Descriptive Systems for Computer Structures,
C. G. Bell and A. Newell, Proc. AFIPS Spring Joint Computer
Conf., 1970, pp. 351-374.

Evaluation of Aerospace Computer Architecture, M, D. Anderson -
and V. J. Marek, Contractor Rpt. prepared under NASA Contract
NAS12-589.

Modular Design of Computers through the Use of Multi-Level Simula-
tion, K. A. Duke et al, Rpt. RC2872 (#13504), IBM Thomas J. Watson
Research Center, Yorktown Heights, N. Y., May 8, 1970,

Evaluation of Hardware—Firmware,—Software Trade-offs with Math-

ematical Modeling, H, Barsamian and A. De Cegama, Proc. AFIPS
Spring Joint Computer Conf., 1971, pp. 151-162.

-37-

